Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Blog Tags: Sage Maker

revolutionizing_smb_insurance

Revolutionizing SMB Insurance with AI-led Underwriting Data Prefill Solutions

US SMBs often struggle with complex and time-consuming insurance processes, leading to underinsurance. Tiger Analytics’ AWS-powered prefill solution offers a customizable, accurate, and cost-saving approach. With 95% data accuracy, a 90% fill rate, and potential $10M annual savings, insurers can streamline underwriting, boost risk assessment, and gain a competitive edge.

Read More

REST API with AWS SageMaker: Deploying Custom Machine Learning Models

Learn how to deploy custom Machine Learning (ML) models using AWS SageMaker and REST API. Understand the steps involved, including setting up the environment, training models, and creating endpoints for real-time predictions, as well as why to integrate ML models with REST APIs for scalable deployment.

Read More
Copyright © 2024 Tiger Analytics | All Rights Reserved